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A B S T R A C T

Allchar ore deposit, a well-known polymetallic mineralisation, is drained by the Majdanska River characterized
by elevated concentrations of heavy metals and metalloids, particularly As, Tl and Sb. The present study was
conducted at the spot of the confluence of spring water, heavily loaded with toxic metals, which joins the
Majdanska River by a few meters short stream. The spring water is outflow of underground water drained by
passage through polymetallic mineralisation. The chemical characteristics of the Majdanska River water and the
associated periphyton were used to evaluate and explain the abiotic response to the intrusion of toxicants and its
impact on biota.

At the site of the stream inflow, thorough mixing of Majdanska River water and incoming spring water
resulted in an increase of Eh and pH close to the average river value. This geochemical barrier causes significant
changes in the mobility of metal species. Moreover, the output composition of water is further modified by
biological processes.

The examined biota community was found to consist of algae Audouinella sp. and Spirogyra sp., with coex-
isting freshwater snails Radix labiata, diatoms and bacteria.

While the carbonate bedrock controls the pH of the river water by effective buffering, it seems that bio-
concentration and biomineralisation of algae exerted control on toxicants along the entire river flow. The highest
bioconcentration factors were obtained for Fe, Mn and Ti which implies the biomineralisation of iron as a
product of extracellular deposition on the cell walls on the organic matrices. Bioconcentration of As, Cr, Cs, Cu
and Se was more important in Audouinella sp., while Cd, Co, Sr, and Zn preferentially accumulated in Spirogyra
sp. High accumulation of Ba (3mg/g d.w.) in Spirogyra sp. was associated with the intracellular biominer-
alisation. These findings suggest the potential use of Spirogyra sp. in the remediation of waters polluted by
barium or as the biological pathfinder indicator for metal deposits associated with barite.

1. Introduction

Acid mine drainage (AMD) effects have created worldwide concerns
for many years, largely over their negative impact on freshwater eco-
systems, altering the diversity, structure, distribution and functioning
of aquatic communities (Novis and Harding, 2007; Escarré et al., 2011;
Bačeva et al., 2015; Talukdar et al., 2015; Nordstrom et al., 2015;
Talukdar et al., 2017; Idaszkin et al., 2017). Remediation activities are
currently being implemented at many sources of mine drainage with

the goal of improving water quality in receiving streams. However,
metal mining has increased at an alarming rate, and its residuals are not
always treated adequately, often being released into small water bodies
(Winterbourn et al., 2000; Doi et al., 2007).

Acid mine drainage affects the aquatic biota, benthic communities
especially, by three main mechanisms – acidification, toxic concentra-
tions of dissolved metals, and precipitation of metal hydroxides (mainly
iron and aluminium hydroxides) (Nelson and Roline, 1996). Metal
hydroxides and other metal compounds remain soluble at low pH but
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precipitate at higher pH and can coat streambeds. As highly acidic
waters increase in pH through buffering or dilution, a stage of pre-
cipitation and deposition of iron and then aluminium hydroxides will
occur before the waters reach neutral pH. Although low pH and high
concentrations of dissolved metals affect aquatic life, the deposition of
metal hydroxides can result in more pronounced effects on the biomass
of stream biota and ecological processes (He et al., 1997; Jakimska
et al., 2011; Nordstrom et al., 2015). Failure to consider the role of
precipitation of metal hydroxides can prevent successful prediction of
ecological recovery in streams undergoing remediation.

To cope with environmental disturbances caused by AMD, a range
of species evolved various physiological mechanisms to improve their
tolerance to heavy metal toxicity (Baker et al., 1994). High tolerance to
elevated levels of heavy metals was also reported for some freshwater
algae (Goodyear and McNeill, 1999; Das et al., 2008; Rajfur et al., 2011;
Chekroun and Baghour, 2013) and gastropods (Beeby and Eaves, 1983;
Lau et al., 1996; Jordaens et al., 2006). These species have the ability to
aggregate heavy metals within their organelles and are often used as
bioindicators in polluted ecosystems (Goodyear and McNeill, 1999;
Kaonga et al., 2008; Rajfur et al., 2010; Rajfur et al., 2011; Brayner
et al., 2011; Durrieu et al., 2011; De Philippis et al., 2011; Mishra et al.,
2011; Vogel et al., 2010; Kumar and Oommen, 2012). Algae (e.g.
Spirogyra sp.) are also recognized as potential absorbents for heavy
metals from mine or waste water (Gupta et al., 2001; Hamidian et al.,
2013; Vetrivel et al., 2017).

The present study was conducted at the point of confluence of
spring water which drains underground water of Allchar ore deposit
and is heavily loaded with toxic metals, i.e. affected by AMD, with the
Majdanska River. Flowing a fair part over carbonates, the Majdanska
River, however, efficiently reduces acidity whereby toxicant con-
centrations are reduced to ecologically acceptable level. Thus, this site
gives an opportunity to study geomicrobiological processes within this
substantially polluted aquatic environment populated with algae and
gastropods. The chemical characteristics of the Majdanska River water
and associated periphyton, along with the data on present bacteria were
used to evaluate and explain the abiotic response to the intrusion of
toxicants and its impact on biota.

The effects of metal mining residuals in aquatic environments have
already been reported for many areas in the world, including Europe
(Rasmussen and Lindegaard, 1988) with impacts reported on fishes,
invertebrates and macrophytes and even alterations in trophic webs,
but data for south-eastern Europe is largely lacking.

1.1. Allchar ore deposit and short history of mining

The Allchar mine operated from 1881 to 1913 with some inter-
ruptions (Boev et al., 2001–2002). During this period mainly arsenic
ore was excavated, with an estimated potential of 15,000 tons of arsenic
(Ivanov, 1965). Exploration for antimony carried out from 1953 to
1957 and from 1962 to 1965 resulted in the discovery of significant
reserves of low grade ore (Ivanov, 1986). Mineral potential of the All-
char deposit, both mined out and available ore, exceeds 20,000 tons of
antimony with 0.5% Sb cut-off grade (Janković et al., 1997). In 1980s,
thallium from the Allchar mine became of interest as a possible solar-
neutrino detector (Freedman et al., 1976). It gave a new impulse to
systematic exploration for the thallium commodity by the international
LOREX project (LORendite EXperiment) (Ernst et al., 1984; El Goresy
and Pavičević, 1988; Makovicky and Balić Žunić, 1993; and others).
The mineral potential of thallium in the Allchar deposit has been esti-
mated at 500 tons, and it is declared as the world-biggest thallium
deposit, relative to reserves based exclusively on thallium minerals
(Ivanov, 1986). During the 1986–1989 period gold mineralisation was
also systematically explored. The results of both field and laboratory
studies showed that the geological, geochemical, mineralogical and
hydrothermal alteration features are similar to those which characterize
Carlin-type mineralisation of the western United States (Stafilov and

Todorovski, 1987; Percival and Boev, 1990; Percival and Radtke, 1994;
Strmić Palinkaš et al., 2018).

The Allchar mine, besides hosting common metal sulphides such as
pyrite, marcasite, stibnite, realgar-orpiment-lorandite and their sec-
ondary equivalents, is a “garden” of thallium and arsenic sulphide and
sulphosalts, like arsenopyrite FeAsS, bernardite Tl(AsSb)5S8, jankovi-
cite Tl5S9(AsSb)4S22, lorandite TlAsS2, parapierrotite TI(Sb,As)5S8, pi-
cotpaulite TlFe2S3, dorallcharite Tl0.8K0.2Fe3(SO4)2(OH)6,
raguiniteTlFeS2, rebulite Tl5Sb5As8S22, simonite TlHgAs3S6, vrbaite
Tl4Hg3As8Sb2S20, weissbergite TISbS2, fangite Tl3AsS4, and an unnamed
new mineral Fe2Tl[(As0.85S0.15)O4]3·4H2O. The ore body in the richest
zone contains about 18,000 cubic meters of ore with an average Tl
content of 0.35% (Boev et al., 2001–2002). The sulphide minerals ty-
pically compose>10 and up to 50 vol% of the host rock (Strmić
Palinkaš et al., 2018).

Although mining activities ceased in 1913, the adverse effects on
the environment still persist. The operation of the mine released waste
products, among which the highly toxic As and Tl, fortunately into a
scarcely populated area. Apart from human activity (mining), natural
exposure of the ore deposit to oxidation by intrusion of water and
oxygen and dispersion of primary metal accumulation are a con-
sequence of erosional processes. These started soon after the last de-
glaciation with high erosional rates from several tens m/Ma to 165m/
Ma, as determined by 26Al, 36Cl, and 21Ne isotopic studies (Pavičević
et al., 2016). The lower and upper limits of the paleo-depths for the ore
body sector Centralni Deo are 250–290 and 750–790m in the last
4.3 Ma, respectively. The upper limit of the paleo-depth for the ore
body Crven Dol is 860m over the same geological age (Pavičević et al.,
2016).

2. Materials and methods

2.1. Site description

The Allchar ore deposit is located in the north-western region of
Kožuf Mts. in the Republic of Macedonia (Fig. 1a, b). Nonetheless, the
influence of mineralisation is notable in the wider area. The Majdanska
River sediments contain elevated levels of antimony, likely an artefact
of mining activities in the former Ottoman Empire (Bačeva et al., 2014).
However, Bačeva et al. (2014) showed that the anthropogenic influence
of the mine in the Allchar area was limited and had almost no impact on
the distribution of As, Sb and Tl in the river sediments, except in the
immediate vicinity of the former mine (Sb). The distribution of these
elements in local soils and river sediments is related almost exclusively
to the decomposition of mineralised rocks and subsequent pedogenetic
processes (Bačeva et al., 2014). Moreover, the content of Tl in the close
vicinity of Allchar area represents the highest established natural and
anthropogenic augmentation of thallium in soil worldwide (Bačeva
et al., 2014).

Although the surrounding of the Allchar mine is mostly unin-
habited, the geochemistry of this area has been extensively studied
(Lepitkova et al., 2013; I. Boev et al., 2014; B. Boev et al., 2014), due to
possible adverse influences on agriculture. Namely, sediments from the
Majdanska River are transported to the Crna River and deposited in its
alluvial sediments, an area of intensive agriculture (Bačeva et al.,
2014).

Near the study area, there is also Ržanovo mine (Fig. 1b), a deposit
of Fe-Ni lateritic ore formed by laterization processes of ultrabasic
complexes during the Upper Cretaceous (Serafimovski et al., 2012).

2.2. Geological and hydrogeological setting

Allchar is polymetallic Sb-As-TI-Au deposit situated in the western
part of the Vardar zone. It is spatially and temporally associated with
Pliocene (~5Ma) post-collisional high-K calc-alkaline to shoshonitic
volcano-plutonic centre (Boev et al., 2001–2002). The deposit owes its

V. Bermanec et al. Journal of Geochemical Exploration 194 (2018) 104–119

105



complex lithology and tectonic structure to adherence of the unstable
Vardar zone with Neotethyan geological heritage and rigid crystalline
Pelagonian block (Boev and Serafimovski, 1996) (Fig. 2). The miner-
alisation is associated with the Pliocene volcano-intrusive complex of
calc-alkaline suites (3.9–5.1Ma, Janković et al., 1997), controlled by
intersection of deep fractures striking mostly N-S and neotectonic
ruptures with SW-NE directions. This igneous complex formed on a
basement composed of Triassic sediments, Jurassic ophiolite (gabbro-
peridotites prevail) and Cretaceous sediments. The host rocks of the
mineralisation are predominantly carbonates of Triassic and Tertiary
age, including some Pliocene-age tuffaceous and volcanoclastic sedi-
ments. This heterogeneous collage is highly hydrothermally altered by
silification, argillitization, dedolomitization, sulphidation and super-
gene alteration typical of a humid climate. Pyrite and marcasite are
replaced by Fe oxides and hydroxides, As-, Sb- and Tl-sulphides form
oxides and oxysalts, and igneous and sedimentary rocks are converted
to mixtures of secondary clay minerals.

The ore complex is highly porous and permissive to intrusion of
meteoric waters and represents a rich aquifer containing acid mine
drainage (AMD) as a carrier of toxic metals to the springs. The footwall

of the ore complex forms an aquitard incapable of transmitting sig-
nificant amounts of spring water under prevailing hydraulic gradients.
This barrier is partly composed of Precambrian gneisses and marbles
that are conformably overlain by Paleozoic metasedimentary rocks,
mostly phyllites, schists, metasandstones and marbles, forming the
underlying complex of the Kožuf Massif.

The Allchar ore deposit at the flanks of the Kožuf Massif (Voras
Massif in Greece) receives more annual precipitation (annual mean
800–1000mm/y) than the wider area of Eastern Macedonia
(600–800mm/y). The mine impoundments are drained by the per-
ennial stream of the Majdanska River, a tributary of the Crna River, a
short “gaining stream flow” recharged by overflow, interflow and base
flow with copious amounts of water. The saturation zone is above the
elevation of surface water for most of the year (Fig. 3a). The conditions
of “losing stream flow” (Fig. 3b) occur during the winter period when
precipitation falls below 200–300mm/y. Nonetheless, strong winter
and spring precipitation, or ephemeral summer storms exert a large
influence on the position of the water table and nature of the “base
flow”.

Favourable hydrological regime and carbonate bedrocks provide

Fig. 1. Map of the study area, its geographical position (a), location of the Allchar mine and the Majdanska River (b), detailed view of sampling site (c) with indicated
sampling locations (d).
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requisite acidity buffering; however, contaminant concentrations re-
main above the permissible values. Dolomites, less affected by altera-
tion processes or tectonic fracturing, behave as traditional karst aqui-
fers with a base flow confined by a fault system. The result is discharge
of polluted stream water above or below water surface, respectively.
The heavily polluted groundwater is discharged into the Majdanska
River by a “discharge spring”, as termed further on in the text. Its
character and interaction with river water and biota are the subject of
this study.

2.3. Sample collection

Sampling was carried out in the Majdanska River (Fig. 1), at the
crossing of the river and the dirt road to Crven Dol (GPS E
21°56′43.346″, N 41°9′51.084″). This crossing is characterized with a
small spring and samples were collected at three locations, at the site of
discharge of this spring into the Majdanska River (location 1) and
downstream of discharge (locations 2 and 3) (Fig. 1c, d). At all loca-
tions, the depth of water was<0.5m. Samples were collected

Fig. 2. Geological map (ref) of studied area (with indicated sampling point) shows complex geological environment (Janković et al., 1997).

Fig. 3. Components of a river hydrography (after Maidment, 1992, slightly modified). The model depicts discharge of acid mine water into the Majdanska River.
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following the recommendation on sampling methodology of European
Commission (2000). Sampling was conducted in spring 2016, under
“gaining stream flow” conditions.

A total of eleven water samples were collected at locations 1–3:
three samples at the first site, four at the second and four at the third.
Additionally, water (M) was sampled in the middle of the river, as
shown in Fig. 1d. At each location, water samples were taken at a
distance< 5m in the following manner: 1) for bacteriological analyses,
the samples were aseptically taken in sterile 1 L glass bottles and pro-
cessed in the laboratory within 24 h after collection; 2) for trace ele-
ment analysis samples were collected in glass bottles and immediately
after sampling acidified with nitric acid, 1% suprapur HNO3 (v/v). At
each sampling location the sediment and periphyton were also col-
lected, along with snails. Sediment (ca 0.5 kg) was sampled with a
plastic sampling shovel and stored in a plastic bag. Samples of per-
iphyton comprised of two macroscopically different communities and
were collected by gently removing the stones from the water. Total of 4
snails, with an average size of 12–20× 7–13mm, was isolated from the
algal biofilms. All samples were stored at 4 °C until further processing.

2.4. Sample preparation

The algal biofilms from the stones surfaces were scraped by brush
into a dark specimen container and stored at −40 °C. Before storage,
the samples were divided into subsamples for further analyses (biota
assemblages, scanning electron microscopy (SEM) and multielement
analysis), as described below.

For taxa identification, clusters of soft algae were repeatedly washed
eight times with distilled water to remove the present epiphytes (dia-
toms). Subsamples of soft algae were preserved with 2% formaldehyde
(final concentration). Cleaned diatom frustules subsamples were pre-
pared following procedure described by Hendey (1964). Firstly, diatom
subsamples were treated with hydrochloric acid (HCl) to remove cal-
cium carbonate, and then the organic matter was removed with sul-
phuric acid (H2SO4) and sodium nitrate (NaNO3). For SEM analysis, the
soft algae and diatom subsamples were dehydrated in increasing series
of ethanol aqueous solutions, dried on a critical point table-top dryer
and then sputter-coated with gold.

Samples of water, periphyton (soft algae) and freshwater snail were
subjected to multielement analysis. For that purpose, subsamples of soft
algae were dried at 105 °C, lyophilized (Alpha 1–2, Christ, Germany)
and homogenised using an agate mill. The snail soft tissue was removed
from the shells with a plastic knife, air-dried and homogenised using an
agate mill.

Prior to multielement analysis, subsamples (0.1 g) of algae and
freshwater snail shell and tissue were subjected to a digestion in the
microwave oven (Multiwave 3000, Anton Paar, Graz, Austria) with
7mL of HNO3 and 0.1 mL of HF (Filipović Marijić and Raspor, 2012).
Sample digests were prepared for analysis by addition of indium (In,
1 μg L−1) as internal standard, without further dilution.

Prior to analysis, aliquots of water samples were acidified with 2%
(v/v) HNO3 (65%, supra pur, Fluka, Steinheim, Switzerland) and in-
dium (In, 1 μg L−1) was added as internal standard.

Water, sediment and freshwater snail samples were also used for
bacteriological analysis. For that purpose, samples were concentrated
on the sterile membrane filters of pore size 0.45 μm in triplicate both
before and after dilution in sterile peptone water.

2.5. Physico-chemical and trace element analyses

The physico-chemical parameters of the river water (pH, Eh, con-
ductivity and dissolved oxygen) were measured in situ at all three lo-
cations (1, 2 and 3) according to the Standard Methods for Examination
of Water and Wastewater (APHA, AWWA, WEF, 2005) by using a
multiparameter portable set (Hach). The pH, Eh and conductivity were
calibrated with standard solutions, with a precision of 0.01 pH unit,

1 mV and 1 μS/cm, respectively, while the oxygen probe (accuracy of
0.01mg/L) has an automatic internal calibration. The multielement
analysis of water, algae and snail shell and tissue samples was per-
formed by High Resolution Inductively Coupled Plasma Mass Spectro-
metry (HR-ICP-MS) using an Element 2 instrument (Thermo, Bremen,
Germany). Typical instrument conditions and measurement parameters
used throughout the work were reported earlier (Fiket et al., 2007,
2017).

All samples were analysed for total concentration of 25 elements
(Ag, Al, As, Ba, Be, Bi, Cd, Co, Cr, Cs, Cu, Fe, Li, Mn, Mo, Ni, Pb, Rb, Sb,
Se, Sr, Ti, U, V and Zn). Quality control of analytical procedure was
performed by simultaneous analysis of the blank and certified reference
material for water (SLRS-4, NRC, Canada) and Rye grass (ERM 281,
IRM, Belgium). A good agreement between the analysed and certified
concentrations within their analytical uncertainties for all elements was
obtained (± 10%).

2.6. Analysis of periphyton

Taxa were identified to species level where possible and counted at
1000× magnification using an Olympus BX-51 microscope equipped
with a 100× phase contrast objective (numerical aperture: 1.25).

For the determination of algal species, recent taxonomic literature
was used (Hindák et al., 1978; John et al., 2002; Krammer, 2002;
Krammer and Lange-Bertalot, 1991a, 1991b; Lange-Bertalot, 2001;
Lange-Bertalot and Genkal, 1999; Patrick and Reimer, 1975; Round
et al., 1990; Wehr and Sheath, 2003).

Diatoms were examined under Gemini Supra Carl Zeiss scanning
electron microscope (EHT=1.00mV, WD from 2.9 to 3.4 mm) in the
Laboratory for electron microscopy and microanalyses at the University
of Pretoria. The abundance of established diatoms was expressed as
percentage of occurrence frequency for each species. In order to relate
the diatom community to water quality, Saprobic Index SI (Wegl, 1983)
and Trophic Diatom Index TDI (Rott et al., 1999), were calculated.

2.7. Bacteriological analysis

Aerobically grown total heterotrophic bacteria were determined on
Nutrient agar (Biolife) after incubation at 22 °C/72 h (APHA, AWWA,
WEF, 2005). Carbapenem-resistant bacteria were determined on
CHROMagar Acinetobacter supplemented with CR102 (CHROMagar),
which allows the growth of carbapenem-resistant bacteria (Hrenović
et al., 2016) after incubation at 37 °C/72 h.

The numbers of aerobically grown total heterotrophic bacteria and
carbapenem-resistant bacteria were determined as Colony Forming
Units (CFU), logarithmically transformed, and expressed as log CFU per
1mL of water or 1 g of sediment and freshwater snail.

Statistical analyses were carried out using Statistica software 12
(StatSoft, Inc.). Absolute numbers of bacteria were logarithmically
transformed. The comparisons between variables were done using the
ordinary Student's t-test for independent variables. Statistical decisions
were made at a significance level of p < 0.05.

2.8. Basic prediction for the destiny of toxicants in the Majdanska River

Monovalent cations, Li+, Rb+, Cs+, and divalent Sr2+, act as con-
servative ions in aqueous media, showing dilution effects without
changes in speciation under near neutral conditions. They can be re-
garded as pH non-specific during adsorption on hydrous iron oxides
(Musić and Ristić, 1988).

On the other hand, divalent cations, e.g. Ba2+, Be2+, Cd2+, Co2+,
Cu2+, Ni2+, Pb2+ and Zn2+, become increasingly insoluble as the pH
increases (Evangelou, 1998; Gaillardet et al., 2003). At the near-neutral
pH, the solubility of the most heavy-metal cations is severely limited by
precipitation/co-precipitation with Fe-Ti-Al-Mn oxides and hydroxides,
or, which is more likely, by their strong adsorption on aforementioned
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hydrous metal oxides due to ongoing deprotonation processes
(Gaillardet et al., 2003; Szekeres and Tombácz, 2012).

Elements such as bismuth, chromium and vanadium, readily form
oxo-complexes in aqueous media. Bismuth is stable as oxo-complex
Bi6O6

6+ at low pH values (Brookins, 1988), while under normal surface
conditions of Eh and pH Bi3+ is rapidly hydrolysed and tends to form
insoluble basic salts. Chromium easily changes valence states from Cr6+

to Cr3+ and vice versa (Tingzong et al., 1997). Redox boundary be-
tween reduced and oxidised forms depends on Eh and pH. Oxyanion
CrO4

2− is mobile and highly toxic form, readily reduced by Fe2+ to
Cr3+ which hydrolyses as Cr(OH)2+, Cr(OH)+ and Cr(OH)3 behaving
as other trivalent cations and co-precipitating with iron hydroxide.
Manganese (MnO2) catalyses oxidation of Cr(III) species, which releases
chromium by its most toxic form (Tingzong et al., 1997).

Vanadium valences range from 2+, 3+, 4+ and 5+. Their re-
presentatives are soluble over the broad Eh-pH range. Vanadium (IV) at
lower pH forms vanadyl ion (VO2+), while vanadium (V) forms an
extensive family of oxyanions (Brookins, 1988; Gaillardet et al., 2003).
Orthovanadate ion VO4

3− is the principal species present at pH 12–14.
On the other hand, protonated vanadates, H2VO4

−, HVO4
2− are

dominant at lower pH. Uranium, selenium and arsenic change their
valence state under variable redox conditions giving way to a plethora
of mobilising and immobilising forms in near-surface environment.
Under oxidising conditions, these elements form stable positive and
negative ion complexes in their higher valences. As the pH increases,
most oxyanions tend to become less strongly adsorbed, even at neutral
values (Dzombak and Morel, 1990). The oxyanion-forming elements
such as As and Se as well as uranyl-carbonate complexes show high
mobility not constrained by adsorption effects. Their negative charge
stays in repulsive relation with deprotonised surfaces of colloids
(Gaillardet et al., 2003; Szekeres and Tombácz, 2012).

In the Allchar deposit, the arsenic is present as the major element in
the form of realgar and arsenopyrite minerals. There is a long list of As-
Tl-Sb-Fe minerals which contribute to arsenic and thallium species by
weathering of ores and mine waste dumps. Redox potential (Eh) and pH
are the most important factors controlling arsenic speciation. Under
oxidising conditions, H2AsO4

− is dominant at low pH (less than about
pH 6.9), while at higher pH, HAsO4

2− becomes dominant (H3AsO4
0 and

AsO4
3− may be present in extremely acidic and alkaline conditions,

respectively). Under reducing conditions, at pH<9.2, the uncharged
arsenite species H3AsO3

0 will predominate (Brookins, 1988).
Oxidation of arsenic minerals in the ore deposit impoundment

competes for O2 with oxidation of pyrite. The pyrite can undergo oxi-
dation by two natural oxidants, oxygen and even more effective ferric
(Fe3+) ion according to simplified reactions such as:

+ + = + ++ − +FeS 3. 5O H O Fe 2SO 2H2 2 2
2

4
2

+ + = + ++ + − +FeS 14Fe 8H O 15Fe 2SO 16H2
3

2
2

4
2

These two reactions bring about a considerable decrease in pH and
an increase in concentrations of ferrous (Fe2+) and sulphate ions in
water (Migaszewski et al., 2007). High concentration of Fe and low pH
(2.3) in an adit of the mine were evidenced by Alderton et al. (2005)
(Table 1). Thus, predicted high concentrations of sulphate ions, and
possibly phosphates (originating from apatite; Strmić Palinkaš et al.,
2018), inhibit arsenic precipitation occupying colloid surfaces
(Gaillardet et al., 2003; Szekeres and Tombácz, 2012). This constrains
reducing conditions which define the As(V)/As(III) ratio. This ratio
undergoes significant change by discharge of mine water into the
Majdanska River, but its quantitative outcome is ambiguous, due to
slow kinetics of arsenate-arsenite oxidation (Tallman and Shaikh,
1980).

Thallium exists in three valence states, +1, +2, and +3, but only
monovalent Tl(I) and trivalent Tl(III) are present in nature. Their
toxicity depends on the oxidation state, and Tl(III) is 50,000 more toxic
than the Tl(I) (Karbowska, 2016). However, according to Tremel et al.

(1997) monovalent thallous cation occurs in natural waters almost
exclusively. Namely, thallium (III) has an exceptionally strong oxida-
tion potential and is readily reduced into Tl(I), which explains its
subordinate presence in natural compartments (Brookins, 1986).

3. Results and discussion

3.1. Water quality data

The measured physico-chemical parameters (pH, Eh, conductivity,
and dissolved oxygen) displayed low variability between sampling
points. Their average values are given in Table 1. The mean pH value
characterises water of the Majdanska River as slightly alkaline, while
the Eh falls in the range characteristic of freshwater systems. The pH,
conductivity and dissolved oxygen values coincide with values gen-
erally attributed to conditions supporting diverse aquatic life, and
suspended solids indicate high water clarity of the Majdanska River
water.

3.2. Species composition

The two macroscopically different periphyton communities ob-
served in the field were identified as Audouinella sp. Boryand and
Spirogyra sp. Link (Fig. 4). Among the diatom assemblages 12 species
were established with predominance of Cocconeis and Gomphonema
group (Fig. 5, Table 2).

Algae are significant indicators for the environmental quality of
aquatic ecosystems (Hering et al., 2006; Chen et al., 2008; Kelly et al.,
2008). Due to widespread distribution, their small size and very short
generation time (Stevenson and Pan, 1999), they are the main primary
producers well established in aquatic food webs and are very sensitive
to majority of physicochemical and ecological changes in the environ-
ment. Calculated TDI and SI values range from 2.0 to 3.2 and 1.8 to 2.8,
respectively, indicating good environmental status in terms of water
quality.

The freshwater snails, identified as Radix labiate (Rossmässler,
1835–1837), were found inside of both identified algal communities,
probably feeding on them. Sporadically, some bacteria were also found
in association with identified algae. The most abundant rod-shaped
form was observed on the soft algae surfaces (Fig. 6).

3.3. Trace element distribution in water and biota

Results of measurement of 25 elements (Ag, Al, As, Ba, Be, Bi, Cd,
Co, Cr, Cs, Cu, Fe, Li, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sr, Ti, U, V and Zn) in
water, soft algae communities and snail shell and tissue samples are
shown in Table 1. For comparison, the concentrations reported by
FOREGS for the nearby area (Salminen et al., 2005), data for thermal
waters from Kožuf mountain (Boev and Jančev, 2014) and the Maj-
danska River (upstream from mineralisation; Alderton et al., 2005), as
well as those reported for standing water in an adit in Allshar (Alderton
et al., 2005) were added to Table 1.

The water samples 2, 3, and M displayed similarities regarding the
level of measured elements. The highest concentrations were obtained
for As (99.8–145 μg L−1), Fe (31.7–67.3 μg L−1) and Sr
(127–167 μg L−1), while the lowest concentrations were observed for Bi
(0.002–0.004 μg L−1), Cd (0.008–0.030 μg L−1) and Be
(0.020–0.032 μg L−1) (Table 1).

Since the Geochemical atlas of Europe (FOREGS, Salminen et al.,
2005) lacks information on element concentration for Macedonian
stream waters, the obtained results were compared to data for nearby
Greek streams (Table 1). Namely, the Allchar deposit is situated close to
the border of Republic of Macedonia and Greece, and the data available
for nearby Greek streams are considered to mirror the water geo-
chemistry determined by the geological background of the wider area,
at the same time allowing for differentiation of elevated element
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concentrations conditioned by local mineralization. Measured con-
centrations for a number of elements (Ba, Be, Bi, Cd, Co, Cr, Cu, Li, Mn,
Mo, Ni, U and V) were found in accordance with available FOREGS data
(Salminen et al., 2005). On the other hand, As, Cs, Fe, Pb, Rb, Sb, Sr, Ti,
Tl and Zn were found at much higher levels compared to other streams
in the region. While for Fe, Pb, Rb, Sr, Ti, and Zn obtained concentra-
tions for the Majdanska River water were few times higher compared to
the available FOREGS data, levels of As, Cs, Sb and Tl were one to two
orders of magnitude higher than for other streams in the region. For Ag,
Se and Sn FOREGS data are not available for the stream water and could

not be discussed.
Water sample 1, at the site of discharge of acid mine drainage in the

Majdanska River, exhibits significantly higher element concentrations
compared to all other water samples. Only for molybdenum, compar-
able values were obtained. For all other elements, concentrations were
2 to 180 times higher in sample 1 than in other water samples. For As,
Ba, Cs, Li, Rb, Sb, Se, Sn, Sr, U and Zn, concentrations were two to eight
times higher; for Ag, Be, Bi, Cd, Cr, Cu, Ni, Pb, Tl and V concentrations
were up to two orders of magnitude higher, while Al, Co, Fe, Mn, and Ti
displayed hundred to two hundred times higher concentrations in

Table 1
Physico-chemical parameters (measured in situ at three locations) and mean values of element concentrations in water (μg L−1 or *mg/ L), algae (μg g−1) and snail
(μg g−1) samples of the Majdanska River.

Water Algae Freshwater snail

1 2 3 M GRa ThWb A2c A4c Audouinella sp. Spirogyra sp. Shell A Shell B Tissue A Tissue B

pH 7.62 7.76 7.80 7.6 2.3
Eh [V] 0.183 0.167 0.170
Cond. [μS/cm] 163.3 167.1 168.8
S* 7.1 19,688
O2 [mg/L] 9.14 9.20 9.46
Ag 3.05 0.038 0.066 0.082 < 2 0.1 0.2 0.239 0.131 0.199 0.091 0.681 0.241
Al 3619 42.0 23.1 34.5 6.50–9.50 2–67 0.0 2,040,000 902 875 529 240 3243 1529
As 948 145 99.8 111 1.31–1.87 1–286 2.2 280,000 288 132 4.13 4.96 45.8 14.4
Ba 135 28.0 22.4 23.2 14.9–24.9 10–162 236 3043 23.2 33.9 84.0 32.7
Be 1.76 0.032 0.020 0.023 < 0.005 <1 0.895 0.828 <0.005 <0.005 0.185 0.014
Bi 0.076 0.002 0.004 0.003 0.004–0.006 < 3 0.1 0.1 0.118 0.108 0.004 0.018 0.042 0.033
Cd 0.364 0.017 0.030 0.008 0.004–0.007 0.02–0.1 < 2 3650 0.269 0.636 0.030 0.021 1.34 1.22
Co 8.95 0.088 0.044 0.054 0.06–0.08 < 0.1 0.4 8700 9.21 20.6 0.203 0.160 3.73 2.69
Cr 14.9 0.956 0.707 0.768 0.38–0.52 < 5 0.9 3230 178 86.7 1.76 0.801 18.4 2.04
Cs 7.80 1.23 0.931 1.01 < 0.002 0.1–106 7.12 3.32 0.118 0.103 1.55 0.830
Cu 12.4 0.951 0.768 0.618 0.38–0.51 0.4–10 3.2 12,200 23.7 10.1 0.811 0.769 24.6 21.8
Fe 6567 67.3 31.7 52.5 4.0–11 40–140 100 7,886,000 12,011 16,289 314 140 3464 591
Li 5.70 2.22 1.57 1.65 1.00–1.30 1–270 5.00 5.71 0.185 0.377 2.33 1.14
Mn 571 4.77 2.49 3.06 6.70–15.9 0.5–90 20 315,030 583 719 21.6 30.2 240 155
Mo 0.920 0.879 0.502 0.566 0.82–1.70 0.2–3.5 0.2 35 1.15 0.807 0.18 0.04 0.565 0.358
Ni 53.4 1.47 1.03 1.00 0.58–0.95 0.9–5.7 10 8190 95.6 66 1.76 1.00 12.9 9.34
Pb 10.3 0.178 0.158 0.106 0.042–0.057 0.005–2 <30 2070 12.6 12.4 0.360 0.578 4.91 1.84
Rb 13.4 5.13 3.88 4.23 0.69–0.94 0.8–63 28.5 25.6 0.730 0.603 12.2 8.59
Sb 51.4 13.5 10.7 11.3 0.04–0.05 0.09–10.6 0.4 10.8 73.2 84.1 2.47 0.902 17.5 2.06
Se 0.607 0.535 0.186 0.107 0.05–0.13 0.2–2 0.86 0.05 <0.05 <0.05 0.347 0.330
Sn 0.128 0.071 0.062 0.081 < 1 0.62 0.532 0.244 0.331 0.560 0.406
Sr 246 167 127 136 0.05–0.11 62–917 135 228 203 270 83.3 29.9
Ti 79.5 1.05 0.387 0.851 < 0.30 2.5–9.4 777 845 16.4 12.7 218 49.7
Tl 21.8 0.668 0.581 0.568 0.003–0.005 0.10–0.40 0.2 0.2 11.3 14.1 0.443 0.386 4.38 2.48
U 1.54 0.444 0.311 0.371 1.70–3.70 0.21–0.70 0.5 541 1.98 2.05 0.047 0.050 0.750 0.415
V 11.4 0.760 0.536 0.578 0.88–1.30 0.1–2 34.6 25.8 0.693 0.402 7.21 1.17
Zn 40.9 9.68 1.98 5.53 0.67–1.20 0.5–23.5 20 9830 58.6 129 11.7 25.4 100 102

a GR - range of values reported by FOREGS for nearby area (Salminen et al., 2005).
b ThW – values for thermal waters from Kožuf mountain (Boev and Jančev, 2014).
c A2 - Majdanska River – upstream from mineralisation, A4 – standing water in adit in Allshar (Alderton et al., 2005).

Fig. 4. The examined biota community is composed of algae Audouinella sp. (a) and Spirogyra sp. (b).
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sample 1 compared to other water samples (Table 1).
Nonetheless, wide range of concentrations in studied water samples

were found to be in accordance with element levels reported for
“thermal mineral water” from the Kožuf Mountain, fed largely by the
Majdanska River (Table 1; Boev and Jančev, 2014). Increased content
of certain elements, especially As, Ba, Cs, Rb, Sr, and U, in the thermal
mineral water from Kožuf Mountain was attributed to the increased
amount of these elements in the surrounding rocks (Boev, 1988; Boev
and Jančev, 2014).

Algae samples also displayed some differences in trace element
distribution. For Al, Be, Bi, Fe, Li, Mn, Mo, Ni, Pb, Rb, Sb, Sn, Ti, Tl, U
and V both algae species displayed comparable concentrations
(Table 1). However, levels of Ag, As, Cr, Cs, Cu and Se were found
higher in Audouinella sp. (by a factor of 1.5–2.4) than in Spirogyra sp.
On the other hand, in Spirogyra sp. values of Ba, Cd, Co, Sr and Zn were
higher (by a factor of 1.4–12.9) than in Audouinella sp. An overall
highest difference between these two algae was observed for Ba which
was found at almost thirteen times higher concentrations in Spirogyra
sp. than in Audouinella sp.

The obtained values for Cr, Ni and Pb in Spirogyra sp. were found to

be in accordance with literature values for Spirogyra sp. from the Shoor
River (Iran) (Hamidian et al., 2013), an area influenced by local agri-
culture and Mn mining activities. Interestingly, levels of Al, Cd, V and
Zn in the Majdanska River samples were several times lower compared
to Shoor River samples, while As, Cu, Fe and Mn displayed much higher
values, two to seven times higher than in Spirogyra sp. from the Shoor
River. Previous studies reported on high accumulation abilities of the
algae Spirogyra sp. for different metals, e.g. Cr (Gupta et al., 2001;
Hamidian et al., 2013), Cu, Mn, Pb and Zn (Rajfur et al., 2011), Fe and
Zn (Hamidian et al., 2013), and Mg, V, As, and Cd and Cr (Hamidian
et al., 2013). However, metal biosorption by Spirogyra sp. was found to
be dependable, not only on various environmental factors, but also on
the algal taxon, age of alga, and seasonal variation (Haritonidis and
Malea, 1999; Novis and Harding, 2007; Das et al., 2008).

Snail samples (both shell and tissue) displayed some differences in
the levels of certain elements. In general, trace elements reached
greater concentrations in soft tissues than in shells; with exception of Sr
which is readily incorporated along with Ca and Mg into the snail
shells. Average element levels were 2 to 50 times higher in the soft
tissues, with the overall highest average enrichments observed for Cs
(11×), U (12×), Rb (16×), Co (18×), Cu (29×) and Cd (50×).
Significant variation in element concentrations between shell and
tissue, where tissue concentrations were much higher than the ones in
the shell, was found to be in accordance with previous findings on
gastropods (e.g. Cravo et al., 2004).

Algae are often used as biological sensors for detecting potential
toxic effects of various inorganic and organic pollutants, including
heavy metals (Brayner et al., 2011; Durrieu et al., 2011). Their ability to
take up and accumulate heavy metals from their surrounding en-
vironment (De Philippis et al., 2011; Mishra et al., 2011; Vogel et al.,
2010; Kumar and Oommen, 2012) is well documented. Gastropods are
also known to easily accumulate pollutants, such as heavy metals
(Beeby and Eaves, 1983; Lau et al., 1996; Jordaens et al., 2006), and
due to their feeding behaviour they are considered to be exposed to
increased contamination and consequently accumulate higher levels of
heavy metals compared to their environment. Conditions of metal

Fig. 5. Dominant diatom species in periphyton developed on algae: a) Cocconeis pediculus Ehr., b) Cocconeis placentula Ehr., c) Gomphonema minutum (C.A.) C. Agardh,
and d) Gomphonema subclavatum (Grun.) Grun.

Table 2
Species occurrence frequency (F), Trophic Diatom Index (TDI) and Saprobic
Index (SI) from periphyton communities.

Taxa F (%) TDI SI

Cocconeis pediculus Ehrenberg 76 2.5 1.8
Cocconeis placentula Ehrenberg 82 2.5 1.8
Cocconeis pseudolineata (Geitler) Lange-Bertalot 27 2.3 2.0
Gomphonema minutum (C. Agardh) C. Agardh 56 2.8 2.2
Gomphonema subclavatum (Grunow) Grunow 62 2.0 2.2
Navicula tripunctata (O.F. Müller) Bory 24 2.6 2.0
Navicula veneta Kützing 18 3.0 2.8
Nitzschia fonticola (Grunow) Grunow 16 3.0 2.0
Nitzschia sp. 8 3.2 2.3
Planothidium lanceolatum (Bréb. ex Kütz.) Lange-Bertalot 22 2.0 1.8
Rhoicosphenia abbreviata (C. Agardh) Lange-Bertalot 9 2.7 2.1
Ulnaria biceps (Kützing) Compère 11 3.0 1.9
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accumulation in both algae and snails are discussed in more detail in
Sections 3.5.2 and 3.6.

3.4. Bacteriological analysis

The abundance of bacteria in water, sediment and freshwater snail
Radix labiata from Majdanska River is shown in Table 3. The numbers of
total heterotrophic bacteria were in usual range for environmental
samples (Ehrlich and Newman, 2009). Carbapenem-resistant bacteria
were found in water, sediment and snails living in this metal-con-
taminated environment. The bacterial resistance to carbapenems is
linked to their resistance to heavy metals, as shown for Zn and Cu in
Pseudomonas aeruginosa (Caille et al., 2007). Therefore, the carbapenem
resistance in this environment without the anthropogenic influence is
most probably intrinsic. The latter is known to be present in the en-
vironmental bacterial species such as Stenotrophomonas spp. The
number of total heterotrophic bacteria and carbapenem-resistant bac-
teria is significantly higher in the river sediment as compared to the
river water, and particularly in Radix labiata, suggesting the accumu-
lation of bacteria in sediment and snail tissue.

3.5. Discharge of acid mine drainage into the Majdanska River

The highly acidic water (pH=2.3) in a passageway of the Allchar
mine (Alderton et al., 2005) appears to be the cause for the nature of
underground mine water in the discharge area. Underground mine
waters, i.e. AMD, with pH values lower than those of the river water,
are discharged into the Majdanska River (Table 1). This geochemical
barrier causes significant changes in the mobility of ionic species, due
to changes in speciation and redox shift and new hydrolysis products.
The term “Dilution-Retention factor” is applied as a simple expression
for the decrease of contaminant load after mixing of discharge spring
water and the Majdanska River. Dilution-Retention (Retardation) factor
D asserts semi-quantitatively both effects dilution and chemical reten-
tion (D=X1 / X2; X1= concentration of an element in the discharge
spring water at site 1, and X2= concentration in Majdanska River after
dilution at site 3, Table 4). The D factors are discussed in more detail for
each individual element in the Section 3.5.1.

3.5.1. Abiotic response to increased levels of toxicants
To evaluate the variation and general decrease of toxicant con-

centrations after the mixing of acidic mine water with river water,
standard physico-chemical equilibration criteria have been applied for
25 °C and 1 bar pressure. Considering the elevated concentrations of As
and Tl in the investigated area, which is also reflected in the geo-
chemistry of the examined water samples, special attention has been
paid to these elements in the following discussion.

The lowest D values (from 1.94 to 8.38) were obtained for Sr, Li, Rb
and Cs (Table 4). This is somewhat expected, given the conservative
nature of these elements in aqueous medium.

Low D values (from 2.06 to 9.50) were also calculated for oxyanion-
forming elements As, Sb, Se, Sn and U. Their negative charge stays in
repulsive relation with deprotonised surfaces of colloids, inhibiting
adsorption. Thus, their high mobility in existing oxidising conditions at
Eh=0.17 V is reflected in small D values, ruling out the significant

Fig. 6. Micro-colonies of bacteria formed on the surface of diatom (a) and algae (b, c, d).

Table 3
Numbers of total heterotrophic bacteria and carbapenem-resistant bacteria
(CRB) in samples of water, sediment and freshwater snail Radix labiata, pre-
sented as mean values and standard deviations per 1mL of water or 1 g of
sediment and R. labiata.

Sample Heterotrophic bacteria (log CFU/mL or g) CRB (log CFU/mL or g)

Water 4.8 ± 0.2 −0.5 ± 0.2
Sediment 7.2 ± 0.2 2.1 ± 0.0
R. labiata 8.6 ± 0.2 4.8 ± 0.0

V. Bermanec et al. Journal of Geochemical Exploration 194 (2018) 104–119

112



effect of adsorption retention, only invoking dilution.
The D values for As, Sb, Se, Sn, and U, in increasing order are:

< < < <Sn (2.06) Se (3.26) Sb (4.80) U (4.95) As (9.50)

As stated previously, H3AsO4
0 and H2AsO4

− are dominant forms
under acidic conditions in AMD from Allchar ore deposit.

The reaction of As(V) oxidation:

+ = + +− + −H AsO H O H AsO 3H 2e3 3 2 2 4

Based on the Nernst equation and using data for Eh and pH from
Table 1, the ratio As(V)/As(III) was calculated. Successive steps used in
the calculations are explained in Appendix A.

ΔG°r= 123.52 kJ (29.51 kcal) (ΔG°f taken from Robie et al., 1978,
and Wagman et al., 1982)
E°=+0.64 V
0.183 (V)= 0.64 (V)− 0.0885 pH+0.0295 log
aH2AsO4

−− 0.0295 log aH3AsO3

log H2AsO4
−/H3AsO3= 7.36; H2AsO4

− / H3AsO3=2.3×107

The ratio of As(V)/As(III) = 2.3×107 in the discharge spring water
is highly in favour of oxidised form, although “equilibrium” conditions
should be taken with caution. Arsenic acids and their ionization pro-
ducts are the primary carrier of As and their negative charges are not
compatible with negative charges on the deprotonized colloids, evident
in the low value of D= 9.50. The PO4

3− and SO4
2− ions compete ef-

ficiently with AsO4
3− for adsorption sites and also interfere in cell

metabolism of algae and affect value of As(V)/As(III) ratio (more in
Section 3.5.2).

On the other hand, elements prevalently present as divalent cations
in water, Be, Ba, Cd, Co, Cu, Ni, Pb and Zn displayed higher D values,
ranging from 6.03 to 203.

The D values for Ba, Be, Cd, Co, Cu, Ni, Pb, and Zn, in increasing

order are:

< < < <

< < <

+ + + + +

+ + +

Ba (6.03) Cd (12.1) Cu (16.2) Zn (20.7) Ni (51.8)

Pb (65.2) Be (88.0) Co (203)

2 2 2 2 2

2 2 2

The only exception in the sequence of increasing D factors of di-
valent metals is Ba2+ with small D values (6.03). The behaviour of
barium is controlled by several reaction pathways, such as bioconcen-
tration and biomineralisation processes (see Section 3.6 on biominer-
alisation). The only slight decrease in Ba concentration can be linked to
abiotic effects like complexation of magnesium as MgSO4

0. Namely,
acidic spring water encounters high MgSO4

0 as a result of dolomite
dissolution at the site of ore weathering (Strmić Palinkaš et al., 2018).
The formation of MgSO4

0 complex increases barite solubility by a factor
of 5 over a range of magnesium concentration from 0 to 0.1mol/L
(2430mg/L) (Deutsch, 1997). Constant conductance values between
163.3 μS/cm and 169.8 μS/cm indicate that a decrease of ionic strength
is not expected (Table 1). Besides, the surface complexation constant for
Ba2+ on ferric oxide (log KBa2+=−7.2) is low (Deutsch, 1997;
Dzombak and Morel, 1990).

Similar to divalent cations, the D values calculated for Bi, Cr, V and
Tl ranged from 19.0 to 37.5 and presented in increasing order are:

< < <Bi (19.0) Cr (21.0) V (21.3) Tl (37.5)

The high positive charge of bismuth oxo-complexes (Bi6O6
6+) pre-

dominating at low pH enables efficient coprecipitation with iron oxy-
hydroxide. Relatively high D value (D=19.0) for bismuth suggests its
efficient removal from the water column, presumably by co-precipita-
tion with mentioned iron hydroxides. The same is expected for Cr hy-
drolysis products, Cr(OH)2+, Cr(OH)+ and Cr(OH)3, behaving as other
trivalent cations and co-precipitating readily with iron hydroxide.
Vanadyl ion (VO2+), dominant form at lower pH, is also adsorbed on
ferric hydroxide, at the discharge spring due to pH barrier, as evidenced
by high D value (D=21.3).

According to Tremel et al. (1997) monovalent thallous cation occurs
almost exclusively in natural waters. The solubility of thallous com-
pounds is high as monovalent thallium is readily transported through
aqueous routes into the environment. Lin and Nriagu (1999) reported,
however, a contradicting observation that 66–68% of the total dis-
solved thallium in the Lake Michigan and in two rivers Raisin and
Huronof are in trivalent form. This equilibrium is applicable to the
dilute waters with low concentration of ligands. Mine waste waters,
however, are loaded with SO4

2− with concentration which exceeds the
thallium one after oxidation of sulphides. The Tl(III) engagement goes
via TlSO4

+ complex ion, stable under low pH and Eh, and shifts total
dissolved thallium to thallic domain (log KTlSO4

+=9.2). Thermo-
dynamically, the Tl3+ would be used up and replaced at the expense of
Tl+ (Cheam, 2000). Adsorption of Tl3+ by iron hydroxide or eventually
formation of thallic colloids would have the same affect.

= ++ + −Tl Tl 2e3

Based on the Nernst equation and using data for Eh and pH from
Table 1, the ratio Tl(III)/Tl(I) was calculated.

= +

= +

°

+ +

E 1.28 V;
0.183(V) 1.28(V) 0.0295 log Tl /Tl3

The acidity and redox parameters of the studied discharge spring
water are pH=7.76 and Eh=0.183 V, and thus define the ratio of
Tl3+/Tl+=10–37.2 and, along with high D value, corroborate the
prevalence of Tl+ in studied water and its adsorption on colloid par-
ticles.

Similar observations were reported for streams near the Pb–Zn
Carnoulès mine (southern France) (Casiot et al., 2011). Thallium con-
centration reached 534 μg L−1 in the Reigous acid mine drainage
downstream from the abandoned Pb–Zn Carnoulès mine. It decreased to
5.44 μg L−1 in the Amous River into which the Reigous creek flows,

Table 4
Calculated Dilution-Retention factors (D) for water and Bioconcentration
(BCFs) and Bioaccumulation (BAFs) factors for algae and Radix labiata.

Element D factor BCFs BAFs

Audouinella sp. Spirogyra sp. Shell Tissue

Mo 1.83 1.8 1.3 0.2 0.7
Sr 1.94 0.9 1.6 1.7 0.4
Sn 2.06 8.5 7.3 3.9 6.6
Se 3.26 3.6 0.2 – 1.4
Rb 3.45 6.5 5.9 0.2 2.4
Li 3.63 2.8 3.1 0.2 1
Sb 4.8 6.2 7.2 0.1 0.8
U 4.95 5.3 5.5 0.1 1.6
Ba 6.03 9.7 125 1.2 2.4
Cs 8.38 6.8 3.2 0.1 1.1
As 9.5 2.4 1.1 0.04 0.3
Cd 12.1 16.3 38.5 1.5 77.4
Cu 16.1 30.6 13.1 1 30
Bi 19 36.3 33.2 3.4 11.5
Zn 20.7 12.1 26.6 3.8 20.9
Cr 21.1 224 109 1.6 12.9
V 21.3 56.5 42.1 0.9 6.8
Tl 37.5 18.8 23.5 0.7 5.7
Ag 43.6 3.6 2 2.2 6.9
Ni 51.8 76.5 52.8 1.1 8.9
Pb 65.2 95.8 94.3 3.6 25.7
Be 88 37.3 34.5 – 4.2
Al 157 28.8 27.9 12.3 76.2
Co 203 162 361 3.2 56.3
Ti 205 1189 1294 22.2 205
Fe 207 259 351 4.9 43.7
Mn 229 183 226 8.1 62

The BCF and BAF values have to be multiplied by 103 to attain bioconcentration
and bioaccumulation since element concentration in the water is expressed in
μg L−1 and in algae and snail is expressed in μg g−1.
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with Tl(I) predominating (> 98% of total dissolved Tl), mainly in the
form of Tl+ and TlCl2+ (Casiot et al., 2011).

High concentrations of Al (3169 μg L−1, 1.34×10−4 mol/L), Ti
(79.5 μg L−1, 1.66×10−6 mol/L), Fe (6567 μg L−1, 1.18×10−4 mol/
L) and Mn (571 μg L−1, 1.04×10−5 mol/L) in spring water, and a
substantial increase of D factors (from 157 to 229) for these elements, a
simple measure of the immobility, implies their precipitation.

The D values for Al, Fe, Mn, and Ti in increasing order are:

< < <Al (157) Ti (205) Fe (207) Mn (229)

The next step was to impose saturation and super-saturation criteria
to identify the colloid precipitate which controls trace metal co-pre-
cipitation/adsorption of divalent cations (Gaillardet et al., 2003). A step
forward is to calculate Saturation index of hydroxides SI= log(a1 /
asat), whereas a1 is measured activity of trivalent cation at the site 1
(pH 7.62, Eh 0.183 V), and its equilibrium activity asat by the same
parameters (Appendix A). Thermodynamic reasoning in given the
Appendix A using data from Latimer (1952), Bricker (1964), Wagman
et al. (1968, 1969), Tremaine and LeBlanc (1980) and Garvin et al.
(1987).

Super-saturation prefers higher precipitation rate for titanium (SI
TiO(OH)2= 10.8) and iron (SI Fe(OH)3= 3.4), compared to alumi-
nium hydroxides with slight saturation conditions (SI Al(OH)3= 0.24).
Only manganese hydroxides displayed under-saturated conditions (SI
MnO(OH)=−4.3). Realistic order of precipitation under turbulent
hydrodynamic conditions by mixing discharge water and river water,
however, is not conceivable. The Fe and Ti hydroxide colloids, which
attain significant saturation, have different adsorption capacity and
rate-controlling sol-flocculation formation, which depends primarily on
different zero charge point, and transfers from positive to negative
electric charge on the colloid surface (Gaillardet et al., 2003).

The Al and Mn owe their high D factors to co-precipitation with sols
or flocculated colloids of iron rather than titanium. Co-precipitation
reaction can be defined as:

+ + = + ++ + + −Fe Mn 6H O 2(Fe, Mn)(OH) 6H 2e2 2
2 3

Dissolved cations in acidic waters are thus considered to be rapidly
scavenged through adsorption by iron hydroxide. The iron colloids are
preferred to titanium ones, as a major sink for divalent cations, due to
dominant iron concentration and colloid volume capacity. Obviously, it
does not proceed in the base flow of the saturated zone due to low pH
conditions (Fig. 7).

3.5.2. Impact on biota
To clarify the conditions of metal accumulation in algae and snails

inhabiting the Majdanska River, bioconcentration factors (BCFs) and
bioaccumulation factors (BAFs) were calculated as the ratio of toxicant
concentrations in the biological sample (algae, snail shell or snail
tissue) to its average concentration in the water, BCF=Calgae / Cwater

and BAF=Csnail / Cwater (Table 4). The BCF and BAF factors values
have to be multiplied by 103 given that element concentration in the
water is expressed in μg L−1, and in algae and snails in μg g−1. To
clarify these two terms, bioaccumulation occurs within an organism,
where a certain substance builds up in the tissue and is absorbed faster
than it is removed from it. Bioaccumulation often occurs in two ways,
simultaneously: by eating contaminated food, and by absorption di-
rectly from water. This second case is specifically referred to as bio-
concentration (Arnot and Gobas, 2004).

According to calculated BCFs (Table 4), bioconcentration of As, Cr,
Cs, Cu, and Se was preferred in Audouinella sp., while Ba, Cd, Co, Sr,
and Zn accumulated more in Spirogyra sp.

A similar set of elements (Al, Bi, Cd, Co, Cr, Cu, Fe, Mn, Pb, Ti and
Zn) displayed elevated BAF factors in the snail tissue, with an overall
highest value calculated for Cd (77.4), Al (76.2) and Ti (205).
Nonetheless, BAF factors for snail tissue were higher than those BCFs
observed for algae only for Al, Ag, Cd, Se and Zn (Table 4). For all other

elements, BCF factors were higher in algae than BAFs for snails.
The latter suggests that both algae species have great ability to ac-

cumulate elements from the environment (Table 4). Since the algae are
primary producers they take up metals from enriched sediment and
water by bioconcentration. Bioaccumulation of metals should be ex-
pected in snails grazing algae. However, the analysed snails, collected
from the same place and presumably fed by algae, showed no sig-
nificant accumulation of elements compared to Spirogyra sp. and Au-
douinella sp. indicating that the snail's diet is not exclusively algae.
During the dry period, more grass or other plant material is available.
Toxic metal levels in different snail organs would likely provide a better
understanding of bioaccumulation mechanisms. Active self-remediation
by excretion of toxicants is a possible alternative.

3.6. Biomineralisation, bioconcentration, and bioaccumulation

The foregoing descriptive presentation offers some additional ob-
servations using the diagram in Fig. 8 (logarithms of BCFs, BAFs and D
factors). The diagram shows several features that are likely related to
the hydrogeochemical conditions in the Majdanska River.

While the carbonate bedrock controls the pH in the river water by
effective buffering, it seems that biomineralisation and bioconcentra-
tion of algae exerts control on toxicants along the entire river flow.
Epicellular biomineralisation of oxyhydroxides on algae scavenges
toxicants and contributes to their depletion. An increase in pH by
buffering effect of carbonate rocks is supported by dissimilatory usage
of CO2 and rise of Eh by oxygen, both result of algal photosynthesis. The
snails take active part by consuming dead algal matter, a possible cause
of oxygen deficiency due to bacterial decomposition. As generally
known and confirmed by bacteriological analysis, the ecosystem of the
Majdanska River is teeming with bacteria.

3.6.1. Epicelullar biomineralisation of oxyhydroxides
The D factor steadily grows (Fig. 8) from monovalent cations to

elements that form oxyhydroxides governed by thermodynamic prin-
ciples of abiotic control of solute mobility. It expresses retarded mo-
bility of different species soon after mixing of acid discharge and river

Fig. 7. Eh-pH diagram for the As-Fe-S-H2O system depicts rapid change in Eh-
pH conditions after discharge of spring acid water into Majdanska River at 25 °C
and 1 bar pressure (diagram modified and accomplished after, Bhakta et al.,
1989). Calculated boundaries for As activities [10−5 mol/L]; blue lines for
Fe2+/Fe(OH)3 [10−4 mol/L] and Mn2+/MnO(OH)2 [10−5 mol/L]; and red line
for saturation concentration of Al(OH)4−/Al(OH)3 [10−6 mol/L] at pH 7.76.
Red dot represents chemical conditions at the discharge site 1. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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water. The BCFs× 103 of algae for Fe (259, 351), Mn (183, 226) and Ti
(1189, 1294) have the highest values, implying oxyhydroxides biomi-
neralisation as a product of extracellular deposition on the cell walls of
organic matrices. The epicellular biofilms grow by heterogeneous nu-
cleation of hydroxide on the deprotonated surface, under near-neutral
pH. Preconcentration of Fe(II) on carboxyl and phosphate groups have a
catalytic effect (Bayramoğlu et al., 2006), increasing rapidly the rate of
deposition from saturated solution. The algae favour kinetic over
thermodynamic reaction control, precipitating oxyhydroxides and co-
precipitating trace elements at the mixing site “discharge spring-river
water”. Nevertheless, along the river flow thermodynamic equilibrium
promotes homogenous distribution of toxicants, keeping their level
close to permissible values.

3.6.2. Intracellular biomineralisation of barium
An overall highest difference between the two taxa of algae was

observed for Ba which was found at almost thirteen times higher con-
centrations in Spirogyra sp. (BCF× 103, 125) than in Audouinella sp.
(BCF, 9.7). Although collected at the same habitat on the same boulder,
these two algae species apparently have different abilities to accumu-
late elements by their metabolism (Table 1). Barite precipitation by
living organisms (protozoa) was demonstrated in lacustrine freshwater
environments (Brook et al., 1980; Finlay et al., 1983). The phosphoryl
and carboxyl groups in the structural polymers of the cell wall outer
membrane may be sorbent constituents which play an important role in
the precipitation process. Deprotonation of these groups provides dis-
crete complexation sites for barium in solution. The high content of the
SO4

2− captures Ba ions, thus giving rise to the growth of barite nucleus
(González-Muñoz et al., 2003). Such an interpretation favours epicel-
lular accumulation of barium and formation of barite crystals inclu-
sions.

The intracellular biomineralisation/barite inclusions were evi-
denced by Wilcock et al. (1989). They studied the unicellular desmid
green algae Closterium moniliferum, which precipitate BaSO4 crystals in
small vacuoles at the tips of the cells. By use of SXRF microscopy they
visualized the intracellular dynamics of Ca, Sr, Ba, and S and unravelled
the mechanisms involved in the unusual selectivity exhibited by C.
moniliferum. In this “sulphate trap” model, high sulphate levels and the
presence of soluble Ba in the vacuole leads to precipitation of BaSO4

(Fig. 9). High accumulation of barium (3mg/g of dry biomass, Table 1)
in Spirogyra sp. through intracellular biomineralisation implies its po-
tential use in the remediation of waters polluted by barium.

3.6.3. Bioconcentration
Relatively high concentrations of Co, Cr and Ni in the investigated

aquatic environment and biota are the result of the presence of
ophiolites and nickel laterites within the hydrogeological ecosystem
(Fig. 1b; Serafimovski et al., 2012), which causes the high BCFs in algae
(Table 4). The applied analytical procedure does not allow differ-
entiation of the bioconcentration by biosorption of the metals on bio-
films or microbial mats from the bioconcentration by metabolic cell
activity. The concentrations of other toxic metals, Bi, Cd, Pb, V and Zn,
follow the same scheme of oxyhydroxides precipitation, which does not
seem to be the case for arsenic and thallium. The decrease in their
accumulation seems to be related to excretion from the cytoplasm by
enzymatic activity.

Arsenic, one of the highly toxic contaminants in the Allchar arsenic
mine attracts special attention. Surprisingly, its bioconcentration, in
relative numbers (BCF× 103, Audouinella sp., 2.4, and Spirogyra sp.,
1.1), is one to two orders of magnitude lower than for other heavy
metal toxicants like Zn (12.1, 26.6), Tl (18.8, 23.5), Cd (16.3, 38.5), Cu
(30.6, 13.1), Bi (36.3, 33.2), V (56.5, 42.1), Ni (76.5, 52.8), Pb (95.8,
94.3), Co (162; 361), and Cr (224; 109). Algae readily methylate As(V)
producing organic forms, dimethylarsinic acid (DMAA; (CH3)2AsO
(OH)) and monomethylarsonic acid (MMAA; CH3AsO(OH)2) (e.g.
Hasegawa et al., 2001). The As (III), and DMAA and MMAA are easily
excreted from the cells keeping low concentration of As in algae
(Hellwegerl et al., 2003). The amplitude of these processes depends on

Fig. 8. BCF, BAF, and D factors for measured elements in observed organisms and water.

Fig. 9. SEM image of Spirogyra sp. High accumulation of Ba (3mg/g of dry
biomass) in Spirogyra sp. resulted in accumulation of intracellular inclusions of
barite crystals (Bry).
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the PO4
3−/AsO4

3− concentration ratio which directs the metabolism;
methylation of pentavalent arsenic or reduction into As (III). Conse-
quently, it changes seasonal As speciation and controls its bioconcen-
tration.

Thallium is another harmful contaminant in the Allchar mine. It is
also a highly toxic metal which does not seem to have any vital role in
the metabolism of biota, including algae. Its bioconcentration is higher
in relation to arsenic, but still lower than for some other metals.
Obtained thallium levels were, however, comparable to those reported
by Queirolo et al. (2009) for algae species Myriophyllum acuaticum
(0.295 μg g−1 d.w. to 8.30 μg g−1 d.w.) and Horned pondweed Zanni-
chellia palustris L. (0.615 μg g−1 d.w. to 7.34 μg g−1 d.w.) from La
Cascada, Yalquincha, Ayquina and Rio Salado at Yerbas Buenas, Chile.
High Tl values found in these species were related to local mining and
smelter activities.

In general, logarithm of BCFs in the two taxa of algae, Audouinella
sp. (18.8), and Spirogyra sp. (23.5) show a noticeable covariance
(Fig. 8) for most elements, including thallium and arsenic. On the other
hand, logarithm of BCFs in snail shell and tissue is not correlated with
the element group in algae, although shell-tissue mutual correlation is
well established.

4. Conclusion

The Majdanska River, flowing a fair part over carbonates, efficiently
reduces the acidity of the water and controls toxicant concentrations at
ecologically acceptable levels.

At the site of the spring inflow, Majdanska River mixes thoroughly
with underground mine waters, raising Eh and pH close to the average
river value. This geochemical barrier causes significant change in

mobility of metal species, due to redox changes and new hydrolysis
products. Saturation indices highlight the possibility of precipitation of
Fe phases in the sediments of the river. Mixing of waters with con-
trasting chemical composition, therefore, involves complex interaction
of dilution, adsorption and precipitation processes. Moreover, the
output composition of water is additionally modified by biological
processes.

While the carbonate rocks control pH in the river water by effective
buffering, it seems that biomineralisation and bioconcentration of algae
exerts control on toxicants along the entire river flow. The algae pro-
mote kinetic over thermodynamic reaction control, precipitating oxy-
hydroxides and coprecipitating trace elements at the mixing site “dis-
charge stream-river water”. Barium intracellular biomineralisation in
algae, suspected by high BCF, is testified by SEM image. However,
along the river flow thermodynamic equilibrium establishes homo-
genous distribution of toxicants, keeping their level close to permissible
values. It gives a promising possibility for using Spirogyra sp. for phy-
toremediation of Ba in environmentally unacceptable conditions.
Another use can be envisioned in exploration activity for ore prospec-
tion, as a biological pathfinder indicator for metal deposits associated
with barite.
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Appendix A. Calculation of Saturation index (SI) for Fe, Mn, Al, Ti hydroxides

The Nernst equation was used in order to obtain the element activity (asat) that is needed to compute the SI value with respect to Fe(OH)3 and
MnO(OH) assuming that reactions (1) and (6), respectively, take place. Calculation of ΔG°r of reactions (1) and (6) is needed to calculate Eh0 and is
computed using Eqs. (2) and (7).

In order to calculate saturation indices for Al and Ti hydroxides, assuming that reactions (10) and (12), respectively, take place, equilibrium
constants were calculated according to Eqs. (11) and (13).

A.1. Precipitation of iron hydroxide, Fe(OH)3, at pH 7.62 is controlled by reaction

+ = + ++ + −3H O Fe Fe(OH) 3H e2
2

3 (1)

= − + =° ° ° + °ΔG ΔG Fe(OH) (ΔG Fe 3ΔG H O) 106.32 kJ (25.4 kcal)r 3
2

2 (2)

Standard free energy of formation of Fe(OH)3 accepted from Wagman et al. (1968, 1969), Fe2+ from Tremaine and LeBlanc (1980), and H2O
from Garvin et al. (1987).

Saturation was calculated by equations:

= + ×° + +Eh Eh RT/nF ln(a H /aFe )3 2 (3)

=° °Eh ΔG /nF;r (4)

(Eh is half-cell potential, Eh° standard half-cell potential, n is the number of electrons in the redox equation, R is the universal gas constant, T is
298.15 K (25 °C) and F is the Faraday constant).

= − − +0.183 (V) 1.1 (V) 0.177 pH 0.059 log aFe2 (5)

asatFe2+=4.92×10−8 mol/L is calculated activity of Fe2+ in equilibrium with ferric hydroxide at 0.183 V, and pH=7.62.
Activity of Fe2+ at site 1 is a1; a1= 1.176× 10−4 mol/L; a1 / asat= 2.4× 103.
Saturation index SI Fe(OH)3= log(a1 / asat)= 3.4, shows high super-saturation, which means that decrease in iron concentration from site 1 to

site 3 is due to precipitation of iron hydroxide.

A.2. The same calculation has been performed for MnO(OH) (γ-manganite)

+ = + ++ + −Mn 2H O MnO(OH) 3H e2
2 (6)

Standard free energy for Mn2+; ΔG°Mn2+=−227.7 kJ (−54.4 kcal) is from Latimer (1952), and MnO(OH), ΔG°MnO(OH)=−558.0 kJ

V. Bermanec et al. Journal of Geochemical Exploration 194 (2018) 104–119

116



(−133.3 kcal) from Bricker (1964).

= − + =° ° ° + °ΔG ΔG MnO(OH) (ΔG Mn 2ΔG H O) 143.6 kJ (34.3 kcal)r
2

2 (7)

Saturation was calculated by equation:

= + ×° + +Eh Eh RT/nF ln(a H /aMn )3 2 (8)

= − − +0.183 (V) 1.49 (V) 0.177 pH 0.059 log aMn2 (9)

asatMn2+=0.20mol/L is calculated activity of Mn2+ in equilibrium with γ-manganite at 0.183 V, and pH=7.62.
Activity of Mn2+ at site 1 is a1; a1= 1.04×10−5 mol/L; a1/asat= 5.2× 10−5.
The saturation index SI MnO(OH)= log(a1/asat)=−4.3, shows that the discharge spring water is under-saturated. Under such circumstances,

manganite is coprecipitated with iron hydroxide. Coprecipitation reaction could be perceived as:

+ + = + ++ + + −Fe Mn 6H O 2(Fe, Mn) (OH) 6H 2e2 2
2 3

A.3. Above pH 7 dominating aluminium species in solution is Al(OH)4− controlling saturation of Al(OH)3

+ = +

° =

− +Al(OH) H O Al(OH) H
ΔG 67.0 kJ (16 kcal);

3 2 4

r (10)

= − ° = −log KAl(OH) ΔG (kcal)/1.364 11.733 r (11)

KAl(OH)3= aH+×aAl(OH)4−=1.86×10−12; asatAl(OH)4−=7.76× 10−5 mol/L.
Activity of Al3+ at site 1 is a1; a1= 1.34×10−4 mol/L; a1/asat= 1.73.
SI Al(OH)3= log(a1/asat)= 0.24; it implies that discharge spring water at site 1 is slightly super-saturated, and aluminium might be precipitated

as Al(OH)3.

A.4. Precipitation of TiO(OH)2 proceeds according to the following reaction

+ = ++ +TiO 2 H O TiO(OH) 2H2
2 2 (12)

ΔG°r=−7.53 kJ (−1.8 kcal);
(ΔG°f stand. free energy of formation for TiO2+ and TiO(OH)2 taken from Latimer, 1952).

= − =°log KTiO(OH) ΔG (kcal)/1.364 1.322 r (13)

KTiO(OH)2= a2H+ / aTiO2+=101.32; asatTiO2+=2.75×10−17 mol/L;
Activity of Ti2+ at site 1 is a1; a1= 1.66×10−6 mol/L; a1/asat= 6.04× 1010.
SI TiO(OH)2= log(a1 / asat)= 10.8.
Saturation index SI confirms high super-saturation of TiO(OH)2 and its possible precipitation.
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